| References |
1. Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskiy L. P. Teoriya solitonov: metod obratnoy zadachi [Soliton theory: inverse problem method]. Moscow: Nauka, 1980, 319 p. [In Russian]
2. Dodd R., Eylbek Dzh., Gibbon Dzh., Morrio Kh. Solitony i nelineynye volnovye uravneniya [Solitons and nonlinear wave equations]. Moscow: Mir, 1988, 694 p. [In Russian]
3. Matveev V. B. Lett. Math. Phys. 1979, vol. 3, iss. 6, pp. 216, 222, 425, 503.
4. Matveev V. B., Salle M. A. Darboux Transformations and Solitons. Berlin: Springer-Verlag, 1991, 120 p.
5. Fizika na poroge novykh otkrytiy [Physics on the threshold of new discoveries]. Ed. by L. N. Labzovskiy. Leningrad: Izd-vo LGU, 1990, pp. 246–278. [In Russian]
6. Hopf E. Comm. Pure and Appl. Math. 1950, vol. 3, pp. 201–230.
7. Cole J. D. Quart. Appl. Math. 1951, vol. 9, no. 3, pp. 225–236.
8. Burgers J. M. The Nonlinear Diffusion Equation. Asymptotic Solutions and Statistical Problems. Reidel; Dordrecht; Holland, 1974, 174 p.
9. Svinolupov S. I. Teoreticheskaya i matematicheskaya fizika [Theoretical and mathematical physics]. 1985, vol. 65, no. 2, pp. 303–307. [In Russian]
10. Ibragimov N. Kh. Gruppy preobrazovaniy v matematicheskoy fizike [Transformation groups in mathematical physics]. Moscow: Nauka, 1983, 280 p. [In Russian]
11. Mikhaylov A. V., Shabat A. B., Yamilov R. I. Uspekhi matematicheskikh nauk [Advances in mathematical sciences]. 1987, vol. 42, no. 4 (256), pp. 3–53. [In Russian]
12. Sokolov V. V. Uspekhi matematicheskikh nauk [Advances in mathematical sciences]. 1988, vol. 43, no. 5 (263), pp. 133–163. [In Russian]
13. Svinolupov S. I., Sokolov V. V. Uspekhi matematicheskikh nauk [Advances in mathematical sciences]. 1992, vol. 47, no. 3 (285), pp. 115–146. [In Russian]
14. Adler V. E., Shabat A. B., Yamilov R. I. Teoreticheskaya i matematicheskaya fizika [Theoretical and mathematical physics]. 2000, vol. 125, no. 3, pp. 355–424. [In Russian]
15. Startsev S. Ya. Teoreticheskaya i matematicheskaya fizika [Theoretical and mathematical physics]. 2001, vol. 127, no. 1, pp. 63–74. [In Russian]
16. Calogero F. “Why are certain nonlinear PDEs both widely applicable and integrable?”, What is Integrability?. Berlin: Springer, 1991, pp. 1–62. (Springer Ser. Nonlinear Dynam).
17. Zenchuk A. I., Santini P. M. On the remarkable relations among PDEs integrable by the inverse spectral transform method, by the method of characteristics and by the Hopf–Cole transformation. arXiv:0801.3945
18. Santini P. M. Inverse Problems. 1992, vol. 8, no. 2, pp. 285–301.
19. Svinolupov S. I., Sokolov V. V. Teoreticheskaya i matematicheskaya fizika [Theoretical and mathematical physics]. 1994, vol. 100, no. 2, pp. 214–218. [In Russian]
20. Startsev S. Ya. Teoreticheskaya i matematicheskaya fizika [Theoretical and mathematical physics]. 1998, vol. 116, no. 3, pp. 336–348. [In Russian]
21. Zhuravlev V. M., Nikitin A. V. Nelineynyy mir [Nonlinear world]. 2007, vol. 5, no. 9, pp. 603–611. [In Russian]
22. Zhuravlev V. M. Teoreticheskaya i matematicheskaya fizika [Theoretical and mathematical physics]. 2009, vol. 159, no. 1, pp. 58–71. [In Russian]
23. Zhuravlev V. M. Nelineynaya dinamika [Nonlinear dynamics]. 2014, vol. 10. no. 1, pp. 35–48. [In Russian]
24. Zhuravlev V. M. Prostranstvo, vremya i fundamental'nye vzaimodeystviya [Space, time and fundamental interactions]. 2018, no. 3, pp. 19–30. [In Russian]
25. Zhuravlev V. M. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fizikomatematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2018, no. 1, pp. 147–163. [In Russian]
26. Zhuravlev V. M. Nelineynye volny v mnogokomponentnykh sistemakh s dispersiey i diffuziey [Nonlinear waves in multicomponent systems with dispersion and diffusion]. Ulyanovsk: Izd-vo UlGU, 2002, 200 p. [In Russian]
|