Article 7319

Title of the article

MULTIFUNCTIONAL SUBSTITUTIONS AND SOLITON SOLUTIONS OF INTEGRATED NONLINEAR EQUATIONS 

Authors

Zhuravlev Viktor Mikhaylovich, Doctor of physical and mathematical sciences, professor, sub-department of theoretical physics, Ulyanovsk State University (42, L’va Tolstogo street, Ulyanovsk, Russia), E-mail: zhvictorm@gmail.com 

Index UDK

530.182, 53.01, 51-7 

DOI

10.21685/2072-3040-2019-3-7

Abstract

Background. A multifunctional extension of the functional substitution method for nonlinear partial differential equations is constructed. The aim of the work is to prove the connection between the inverse problem method (IPM) and the functional substitution method (MFP), which play an important role in the modern theory of nonlinear wave processes in various types of physical systems. Such a relationship makes it possible to create an effective way to calculate solutions of integrable using the inverse problem method of equations of mathematical physics, based on functional substitutions.
Materials and methods. The main method used in the work is the method of functional substitutions in the scalar and matrix of its forms. To establish the connection between the new form of solutions of the Korteweg – de Vries (KdV) type equation and the Nonlinear Schrödinger equation (NSE), the Darboux transformation method is used, which plays an important role in the IPM.
Results. The paper developed a method for expanding the MFP in scalar and matrix form, which allows to obtain new integrable models of theoretical and mathematical physics along with their solutions. For the equations that are integrable with the help of the IPM, a new efficient way of constructing exact solutions equivalent to the new type of many functional substitutions is constructed using the example of the KdV and NSE equations.
Conclusions. The developed approach provides a new way of constructing integrable models of theoretical and mathematical physics, along with their exact solutions. 

Key words

functional substitution method, inverse problem method, multisoliton solutions, Darboux transformations, Korteweg – de Vries equation and Nonlinear Schrödinger equation 

 Download PDF
References

1. Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskiy L. P. Teoriya solitonov: metod obratnoy zadachi [Soliton theory: inverse problem method]. Moscow: Nauka, 1980, 319 p. [In Russian]
2. Dodd R., Eylbek Dzh., Gibbon Dzh., Morrio Kh. Solitony i nelineynye volnovye uravneniya [Solitons and nonlinear wave equations]. Moscow: Mir, 1988, 694 p. [In Russian]
3. Matveev V. B. Lett. Math. Phys. 1979, vol. 3, iss. 6, pp. 216, 222, 425, 503.
4. Matveev V. B., Salle M. A. Darboux Transformations and Solitons. Berlin: Springer-Verlag, 1991, 120 p.
5. Fizika na poroge novykh otkrytiy [Physics on the threshold of new discoveries]. Ed. by L. N. Labzovskiy. Leningrad: Izd-vo LGU, 1990, pp. 246–278. [In Russian]
6. Hopf E. Comm. Pure and Appl. Math. 1950, vol. 3, pp. 201–230.
7. Cole J. D. Quart. Appl. Math. 1951, vol. 9, no. 3, pp. 225–236.
8. Burgers J. M. The Nonlinear Diffusion Equation. Asymptotic Solutions and Statistical Problems. Reidel; Dordrecht; Holland, 1974, 174 p.
9. Svinolupov S. I. Teoreticheskaya i matematicheskaya fizika [Theoretical and mathematical physics]. 1985, vol. 65, no. 2, pp. 303–307. [In Russian]
10. Ibragimov N. Kh. Gruppy preobrazovaniy v matematicheskoy fizike [Transformation groups in mathematical physics]. Moscow: Nauka, 1983, 280 p. [In Russian]
11. Mikhaylov A. V., Shabat A. B., Yamilov R. I. Uspekhi matematicheskikh nauk [Advances in mathematical sciences]. 1987, vol. 42, no. 4 (256), pp. 3–53. [In Russian]
12. Sokolov V. V. Uspekhi matematicheskikh nauk [Advances in mathematical sciences]. 1988, vol. 43, no. 5 (263), pp. 133–163. [In Russian]
13. Svinolupov S. I., Sokolov V. V. Uspekhi matematicheskikh nauk [Advances in mathematical sciences]. 1992, vol. 47, no. 3 (285), pp. 115–146. [In Russian]
14. Adler V. E., Shabat A. B., Yamilov R. I. Teoreticheskaya i matematicheskaya fizika [Theoretical and mathematical physics]. 2000, vol. 125, no. 3, pp. 355–424. [In Russian]
15. Startsev S. Ya. Teoreticheskaya i matematicheskaya fizika [Theoretical and mathematical physics]. 2001, vol. 127, no. 1, pp. 63–74. [In Russian]
16. Calogero F. “Why are certain nonlinear PDEs both widely applicable and integrable?”, What is Integrability?. Berlin: Springer, 1991, pp. 1–62. (Springer Ser. Nonlinear Dynam).
17. Zenchuk A. I., Santini P. M. On the remarkable relations among PDEs integrable by the inverse spectral transform method, by the method of characteristics and by the Hopf–Cole transformation. arXiv:0801.3945
18. Santini P. M. Inverse Problems. 1992, vol. 8, no. 2, pp. 285–301.
19. Svinolupov S. I., Sokolov V. V. Teoreticheskaya i matematicheskaya fizika [Theoretical and mathematical physics]. 1994, vol. 100, no. 2, pp. 214–218. [In Russian]
20. Startsev S. Ya. Teoreticheskaya i matematicheskaya fizika [Theoretical and mathematical physics]. 1998, vol. 116, no. 3, pp. 336–348. [In Russian]
21. Zhuravlev V. M., Nikitin A. V. Nelineynyy mir [Nonlinear world]. 2007, vol. 5, no. 9, pp. 603–611. [In Russian]
22. Zhuravlev V. M. Teoreticheskaya i matematicheskaya fizika [Theoretical and mathematical physics]. 2009, vol. 159, no. 1, pp. 58–71. [In Russian]
23. Zhuravlev V. M. Nelineynaya dinamika [Nonlinear dynamics]. 2014, vol. 10. no. 1, pp. 35–48. [In Russian]
24. Zhuravlev V. M. Prostranstvo, vremya i fundamental'nye vzaimodeystviya [Space, time and fundamental interactions]. 2018, no. 3, pp. 19–30. [In Russian]
25. Zhuravlev V. M. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fizikomatematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2018, no. 1, pp. 147–163. [In Russian]
26. Zhuravlev V. M. Nelineynye volny v mnogokomponentnykh sistemakh s dispersiey i diffuziey [Nonlinear waves in multicomponent systems with dispersion and diffusion]. Ulyanovsk: Izd-vo UlGU, 2002, 200 p. [In Russian]

 

Дата создания: 09.12.2019 08:49
Дата обновления: 09.12.2019 09:32